LID Challenge: Weakly Supervised Semantic Segmentation

3d place solution

NoPeopleAllowed: The 3 step approach to weakly supervised semantic segmentation

Mariia Dobko, Ostap Viniavskyi, Oles Dobosevych

UCU & SoftServe team

The Machine Learning Lab at Ukrainian Catholic University, SoftServe

Outline

- Problem description
- Competition
- Approach architecture
 - Step 1. CAM generation via classification
 - Step 2. IRNet for CAM improvements
 - Step 3. Segmentation
- Postprocessing
- Results
- Conclusions

Problem description

A key bottleneck in building a DCNN-based segmentation models is that they typically require **pixel level annotated images** during training. Acquiring such data demands an **expensive**, and **time-consuming** effort.

Image-level annotations

We develop a method that has a **high performance** in segmentation task while also **saves time and expenses** by using only **image-level annotations**.

LID Challenge Dataset

- Multilabel multiclass
- Pixel-wise labels are provided for validation set only
- No pixel-wise annotations are allowed for training

- 200 classes + background
- **456,567** training images
 - validation: 4,690
 - test: **10,000**

Challenges

- **High imbalance** in classes: 'person', 'bird', 'dog'
- Missing labels
- Subset of 2014 has better labels for 'person', than the whole dataset

Previous works

Expectation-Maximization methods Multiple Instance Learning methods

Object Proposal Class Inference methods Self-Supervised Learning methods

					VOC2012 mIoU (%)	
Method	Year	Code available?	Train/test code	Code framework	val	test
MIL-FCN (Pathak et al., 2014)	2015	Y	Train/test	MatConvNet	25.7	24.9
CCNN (Pathak et al., 2015)	2015	Y	Train/test	Caffe	35.3	35.6
EM-Adapt (Papandreou et al., 2015)	2015	Y: Caffe, TensorFlow	Train/test	Caffe, TensorFlow	38.2	39.6
DCSM w/o CRF (Shimoda and Yanai, 2016)	2016	Y	Test	Caffe	40.5	41
DCSM w/ CRF (Shimoda and Yanai, 2016)	2016	Y	Test	Caffe	44.1	45.1
BFBP (Saleh et al., 2016)	2016	Ν	No	-	46.6	48.0
SEC (Kolesnikov and Lampert, 2016b)	2016	Y: Caffe, TensorFlow	Train/test	Caffe, TensorFlow	50.7	51.7
WILDCAT + CRF (Durand et al., 2017)	2017	Y	Train/test	PyTorch	43.7	-
SPN (Kwak et al., 2017)	2017	Y	Custom layer only	Keras	50.2	46.9
AE-PSL (Wei et al., 2017)	2017	Ν	No	-	55.0	55.7
PRM (Zhou et al., 2018)	2018	Y	Test	PyTorch	53.4	-
DSRG (VGG16) (Huang et al., 2018)	2018	Y: Caffe, TensorFlow	Train/test	Caffe, TensorFlow	59.0	60.4
PSA (DeepLab) (Ahn and Kwak, 2018)	2018	Y	Train/test	PyTorch	58.4	60.5
MDC (Wei et al., 2018)	2018	Ν	No	-	60.4	60.8
DSRG (ResNet101) (Huang et al., 2018)	2018	Y: Caffe, TensorFlow	Train/test	Caffe, TensorFlow	61.4	63.2
PSA (ResNet38) (Ahn and Kwak, 2018)	2018	Y	Train/test	PyTorch	61.7	63.7
FickleNet (Lee et al., 2019)	2019	N	No	-	61.2	61.9
IRNet (Ahn et al., 2019)	2019	Y	Train/test	PyTorch	63.5	64.8

Chan et al. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains

Our approach architecture

Step 1. CAM generation via classification

Zhou et al. Learning deep features for discriminative localization

Input

- 72k train, 12k validation
- balanced dataset
- no person class

Results

Step 1. CAM generation via classification

Tested approaches

- ResNet50 vs. VGG16 \rightarrow ResNet produces artifacts
- VGG16 with additional 4 conv layers
- GRADCAM vs. GRADCAM++ \rightarrow GRADCAM++ usually gives just slightly better results

Chattopadhyay et al. Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks

Step 2. IRNet for CAM improvements

Figure 2. Overall architecture of IRNet.

Ahn et al. Weakly supervised learning of instance segmentation with inter-pixel relations.

Input

- Select most confident maps
- Threshold CAMs into confident BG, confident FG and unconfident regions

Results

IRNet

Ahn et al. Weakly supervised learning of instance segmentation with inter-pixel relations.

IRNet's two branches:

- 1 learns the displacement field
- 2 learns class boundaries

Losses for Displacement fields (foreground & background)

Loss for class boundary detection

IRNet. Class Boundary Detection

$$a_{ij} = 1 - \max_{k \in \Pi_{ij}} \mathcal{B}(\mathbf{x}_k)$$

$$\mathcal{L}^{\mathcal{B}} = -\sum_{(i,j)\in\mathcal{P}_{\mathrm{fg}}^+} \frac{\log a_{ij}}{2|\mathcal{P}_{\mathrm{fg}}^+|} - \sum_{(i,j)\in\mathcal{P}_{\mathrm{bg}}^+} \frac{\log a_{ij}}{2|\mathcal{P}_{\mathrm{bg}}^+|} - \sum_{(i,j)\in\mathcal{P}^-} \frac{\log(1-a_{ij})}{|\mathcal{P}^-|}$$

Ahn et al. Weakly supervised learning of instance segmentation with inter-pixel relations.

Step 3 - Segmentation

DeepLab v3+

Chen et al. Encoder-decoder with atrous separable convolution for semantic image segmentation.

Input

Results

- 352x352 input images
- Strong augmentations
- ~42k images for training

Postprocessing

Test Time Augmentations are added after segmentation step. The combination of 2 types of different TTAs, with one having 3 parameters, result in total 6 predictions, which are averaged by mean.

Secret insights

- **VGG** is better for CAM generation as **ResNet** gives artifacts
- **Decrease the output stride** of VGG by removing some of the max pooling operations
- **Confident** and **unconfident** regions for IRNet
- **Multiscale CAM** give a large improvement
- **Dense CRF** doesn't require training, helps to rectify boundaries
- **TTA** after segmentation step drastically improves the results
- Replace stride with dilation in DeepLabv3+ to **decrease the output stride**

Metrics

Quantitative Results

Model	IRNet threshold	TTA	Person CAM	Mean IoU
		No	No	36.65
DeepLabv3+ encoder: ResNet50	0.3	Vee	INO	39.64
		res	Yes	39.80*
	0.5	No		37.11
	0.5	Yes	No	39.58
DeepLabv3+ encoder: ResNet101	0.5	No	INO	36.14
	0.5	Yes		37.15

Validation set

Experiments with different architectures and parameters on the 3rd step

* wasn't submitted

Quantitative Results

Rank 🝦	Participant team 👙	Mean IoU 🌲	Mean accuracy 🜲	Pixel accuracy 🖨	Last submission at 👙
1	cvl	45.18	59.62	80.46	1 day ago
2	VL-task1	37.73	60.15	82.98	2 days ago
3	UCU & SoftServe	37.34	54.87	83.64	2 days ago
4	IOnlyHaveSevenDays	36.24	68.27	84.10	2 days ago
5	play-njupt	31.90	46.07	82.63	1 month ago
6	xingxiao	29.48	48.66	80.82	1 month ago
7	hagenbreaker	22.50	39.92	77.38	19 days ago
8	go-g0	19.80	38.30	76.21	20 days ago
9	lasthours-try	12.56	24.65	64.35	1 day ago
10	WH-ljs	7.79	16.59	62.52	2 days ago

Test set: DeepLabv3+ + TTA

(Horizontal Flip, Multi-scaling)

Open questions

Different types of **regularization** added to the first step \rightarrow Improve the **classification**

Downsampling was used to balance data → **Upsampling** or **combination** of both should be tested

Adding person class labels to the other steps of pipeline \rightarrow

Ability to provide better results for a class which is highly present in data, though severely mislabeled

Mean IoU per class allows to obtain high score even when some classes are skipped ightarrow

A different metric or combination of metrics should be chosen as a premier for this task

Thank you for attention!

dobko_m@ucu.edu.ua

viniavskyi@ucu.edu.ua

dobosevych@ucu.edu.ua

presentation