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Problem description

Image-level annotations

A key bottleneck in building a DCNN-based
segmentation models is that they typically
require pixel level annotated images during
training. Acquiring such data demands an
expensive, and time-consuming effort.

15 times faster to label

> 25 times cheaper
0.035% per image for class,
3.45% for segmentation

We develop a method that has a high performance in segmentation task while also saves time
and expenses by using only image-level annotations.



LID Challenge Dataset

e Multilabel multiclass e 200 classes + background
e Pixel-wise labels are provided for e 456,567 training images
validation set only o validation: 4.690

e No pixel-wise annotations are o test 10,000
allowed for training




count

Challenges

e High imbalance in classes: ‘person’, ‘bird’, ‘dog’

e Missing labels

e Subset of 2014 has better labels for ‘person’, than ato

the whole dataset
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Previous works

Self-Supervised Learning methods

VOC2012 mloU (%)

Method Year Code available? Train/test code Code framework val test
MIL-FCN (Pathak et al., 2014) 2015 b Train/test MatConvNet 25.7 24.9
CCNN (Pathak et al., 2015) 2015 Y Train/test Caffe 353 35.6
EM-Adapt (Papandreou et al., 2015) 2015 Y: Caffe, TensorFlow Train/test Caffe, TensorFlow 38.2 39.6
DCSM w/o CRF (Shimoda and Yanai, 2016) 2016 Y. Test Caffe 40.5 41

DCSM w/ CRF (Shimoda and Yanai, 2016) 2016 Y Test Caffe 44.1 45.1
BFBP (Saleh et al., 2016) 2016 N No - 46.6 48.0
SEC (Kolesnikov and Lampert, 2016b) 2016 Y: Caffe, TensorFlow Train/test Caffe, TensorFlow 50.7 51.7
WILDCAT + CRF (Durand et al., 2017) 2017 i Train/test PyTorch 43.7 -

SPN (Kwak et al., 2017) 2017 Y Custom layer only Keras 50.2 46.9
AE-PSL (Wei et al., 2017) 2017 N No - 55.0 55.7
PRM (Zhou et al., 2018) 2018 Y Test PyTorch 534 -

DSRG (VGG16) (Huang et al., 2018) 2018 Y: Caffe, TensorFlow Train/test Caffe, TensorFlow  59.0 60.4
PSA (DeepLab) (Ahn and Kwak, 2018) 2018 ¥ Train/test PyTorch 584 60.5
MDC (Wei et al., 2018) 2018 N No - 60.4 60.8
DSRG (ResNet101) (Huang et al., 2018) 2018 Y: Caffe, TensorFlow Train/test Caffe, TensorFlow 61.4 63.2
PSA (ResNet38) (Ahn and Kwak, 2018) 2018 Y Train/test PyTorch 61.7 63.7
FickleNet (Lee et al., 2019) 2019 N No - 61.2 61.9
IRNet (Ahn et al., 2019) 2019 Y Train/test PyTorch 63.5 64.8

Chan et al. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains



Our approach architecture

__________________________________________________________________________________________________________________

Multiscale CAM
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Step 1. CAM generation via classification
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Zhou et al. Learning deep features for discriminative localization

Results




Step 1. CAM generation via classification

CNN with GAP Layer CAM
¢ _ c k | P wl_l
P _Ek:w,c.;;/aij {{Gﬁ >
Tested approaches e 2
FC
A B layers
e ResNet50 vs. VGG16 — ResNet produces IHpUE E e i
artifacts ¢ § F | —0Or %slf??mingiﬁle
N | E alinecy Map
. » - L =) wi-Af
e VGG16 with additional 4 conv layers Eadaroy W onlin lyee k
Grad-CAM++
e GRADCAM vs. GRADCAM++ — GRADCAM++ HwizZZafﬁrelu(%)
usually gives just slightly better results B )
Grad-CAM
o1 aye
W2k lon

Chattopadhyay et al. Grad-CAM++: Improved Visual Explanations for Deep
Convolutional Networks



Step 2. IRNet for CAM improvements
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Figure 2. Overall architecture of IRNet.

Ahn et al. Weakly supervised learning of instance segmentation
with inter-pixel relations.




IRNet’s two branches:
1 - learns the displacement field
2 - learns class boundaries

L= L + Ly + L5

Losses for Displacement _
fields (foreground & Loss for class boundary detection

background)

Ahn et al. Weakly supervised learning of instance segmentation
with inter-pixel relations.



IRNet. Class Boundary Detection
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Ahn et al. Weakly supervised learning of insfahce segmentation with intér—pixel relations.



Step 3 - Segmentation

DeeplLab v3+ Input

“Encoder
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Chen et al. Encoder-decoder with atrous separable convolution for
semantic image segmentation.




Postprocessing

scale=0.5 scale=1

_______________________________________________________________________________________

Test Time Augmentations are added after segmentation step. The combination of 2 types of different
TTAs, with one having 3 parameters, result in total 6 predictions, which are averaged by mean.



Secret insights

VGG is better for CAM generation as ResNet gives artifacts

e Decrease the output stride of VGG by removing some of the max pooling operations
e Confident and unconfident regions for IRNet

e Multiscale CAM give a large improvement

e Dense CRF doesn’t require training, helps to rectify boundaries

e TTA after segmentation step drastically improves the results

e Replace stride with dilation in DeepLabv3+ to decrease the output stride



Metrics

Classification Quality !

e F-1score

. 2 X precision X recall !
F1=22%

pression + recall

Step 1. Classification

Segmentation Quality
e Mean loU
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e Pixel Accuracy

e Mean Accuracy

Step 2-3. IRnet & Segmentation

_______________________________________________________________



Quantitative Results

Model IRNet threshold TTA Person CAM Mean loU
No 36.65
No . .
0.3 39.64 Validation set
DeeplLabv3+ Yes
encoder: Yes 39.80* Experiments with different
ResNet50 N6 47 11 architectures and
0.5 parameters on the 3rd
Yes 39.58 step
No
DeeplLabv3+ No 36.14
encoder: 0.5
ResNet101 Yes 37.15

* wasn’t submitted



Quantitative Results

Rank ¢ Participantteam = MeanloU ¢  Mean accuracy = Pixel accuracy = Last submission at =

1 cvl 4518 59.62 80.46 1 day ago
2 VL-task1 37.73 60.15 82.98 2 days ago
Test set:
3 UCU & SoftServe 37.34 54.87 83.64 2 days ago
4 |0nlyHaveSevenDays 36.24 68.27 84.10 2 days ago
DeeplLabv3+ ¢ y .
+ 5 play-njupt 31.90 46.07 82.63 1 month ago
. . xingxiao 29.48 48.66 80.82 1 month ago
(Horizontal Flip,
MU|t|'Scal|ng) 7 hagenbreaker 22.50 39.92 77.38 19 days ago
8 go-go 19.80 38.30 76.21 20 days ago
9 lasthours-try 12.56 24.65 64.35 1 day ago

10 WH-ljs 7.79 16.59 62.52 2 days ago



Open questions

Different types of regularization added to the first step — Improve the classification
Downsampling was used to balance data — Upsampling or combination of both should be tested

Adding person class labels to the other steps of pipeline —
Ability to provide better results for a class which is highly present in data, though severely mislabeled

Mean loU per class allows to obtain high score even when some classes are skipped —

A different metric or combination of metrics should be chosen as a premier for this task
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